Property of Completeness

Every decimal number represents a real number, and every real number can be represented as a decimal.

The product and quotient properties of square roots can be used with a table of square roots to approximate irrational square roots if you don't have a calculator.

Example 2 Approximate each square root to the nearest hundredth.
a. $\sqrt{684}$
b. $\sqrt{0.8}$

Solution
a. $\sqrt{684}=\sqrt{2^{2} \cdot 3^{2} \cdot 19}$
$=\sqrt{2^{2} \cdot 3^{2}} \cdot \sqrt{19}$
$=6 \sqrt{19}$
b. $\begin{aligned} \sqrt{0.8} & =\frac{\sqrt{80}}{\sqrt{100}} \\ & \approx \frac{8.944}{10}=0.8944\end{aligned}$

From the table: $\sqrt{19} \approx 4.359$
$\therefore \sqrt{0.8} \approx 0.89$ Answer
$6 \sqrt{19} \approx 6(4.359)=26.154$
$\therefore \sqrt{684} \approx 26.15$ Answer

Oral Exercises

State whether each number represents a rational or an irrational number.

1. $\sqrt{17}$
2. $\sqrt{49}$
3. $\sqrt{11}$
4. $\sqrt{1.21}$
5. $5+\sqrt{2}$
6. $(\sqrt{2})^{4}$
7. $\sqrt{3}-\sqrt{3}$
8. 7π
9. $2 . \overline{91}$
10. 1.23456789. ..

Simplify.
11. $\sqrt{50}$
12. $\sqrt{150}$
13. $\sqrt{98}$
14. $\sqrt{128}$
15. $\sqrt{220}$

Approximate each square root to the nearest tenth. Use your calculator or the table at the back of the book.
16. $\sqrt{500}$
17. $\sqrt{1200}$
18. $\sqrt{2800}$
19. $\sqrt{4300}$
20. $\sqrt{6300}$

Written Exercises

Simplify.

A

1. $\sqrt{63}$
2. $\sqrt{28}$
3. $\sqrt{98}$
4. $\sqrt{50}$
5. $\sqrt{75}$
6. $\sqrt{24}$
7. $\sqrt{256}$
8. $\sqrt{120}$
9. $2 \sqrt{48}$
10. $6 \sqrt{108}$
11. $5 \sqrt{72}$
12. $9 \sqrt{90}$
13. $\sqrt{529}$
14. $\sqrt{324}$
15. $6 \sqrt{45}$
16. $14 \sqrt{75}$
17. $\sqrt{361}$
18. $\sqrt{864}$
19. $10 \sqrt{125}$
20. $3 \sqrt{160}$
21. $\sqrt{192}$
22. $\sqrt{432}$
23. $5 \sqrt{600}$
24. $4 \sqrt{363}$
25. $6 \sqrt{245}$
26. $5 \sqrt{567}$
27. $\sqrt{5625}$
28. $\sqrt{9200}$
29. $7 \sqrt{1200}$
30. $5 \sqrt{2050}$

In Exercises 31-50, use your calculator or the table at the back of the book.

Approximate each square root to the nearest tenth.
B
31. $\sqrt{800}$
32. $\sqrt{500}$
33. $-\sqrt{700}$
34. $-\sqrt{600}$
35. $-\sqrt{5900}$
36. $-\sqrt{4800}$
37. $\pm \sqrt{7800}$
38. $\pm \sqrt{5600}$

Approximate each square root to the nearest hundredth.
39. $\sqrt{68}$
40. $\sqrt{42}$
41. $-\sqrt{0.5}$
42. $-\sqrt{0.3}$
43. $\pm \sqrt{0.87}$
44. $\pm \sqrt{0.73}$
45. $-\sqrt{0.07}$
46. $-\sqrt{0.08}$

Approximate each square root to the nearest whole number.
47. $\sqrt{150,000}$
48. $\sqrt{240,000}$
49. $\sqrt{420,000}$
50. $\sqrt{580,000}$

Mixed Review Exercises

Find the indicated square roots.

1. $\sqrt{400}$
2. $-\sqrt{169}$
3. $\sqrt{\frac{25}{81}}$
4. $-\sqrt{\frac{49}{225}}$
5. $\sqrt{176^{2}}$
6. $\sqrt{\left(\frac{3}{8}\right)^{2}}$

Simplify.
7. $(17 x)^{2}$
8. $\left(3 y^{4} z^{9}\right)^{2}$
9. $(2 x+3 y)^{2}$
10. $[15(a+2)]^{2}$
11. $\left(11 a^{4} b^{11} c\right)^{2}$
12. $\left(6 z^{3}+5 y^{4}\right)\left(6 z^{3}-5 y^{4}\right)$

Historical Note / π

The number π occurs naturally as the ratio of the circumference of a circle to its diameter. It is not possible to get an exact value for π since it is an irrational number.

The first known approximation (other than just using 3) was given in the Rhind mathematical papyrus as $\left(\frac{4}{3}\right)^{4}$, or 3.1604 . . . This was used until 240 B.c. when Archimedes calculated π to be between $\frac{223}{71}$ and $\frac{22}{7}$, or 3.14 , to two decimal places. Four hundred years later this approximation was improved slightly to $\frac{377}{120}$, or 3.1416. In China, Tsu Ch'ung-chih gave a value for π of $\frac{355}{113}$, or $3.1415929 \ldots$, which is correct to six decimal places. Indian mathematicians used $\frac{62,832}{20,000}$, although this was later refined to $\frac{754}{240}$.

