Property of Completeness

Every decimal number represents a real number, and every real number can be represented as a decimal.

The product and quotient properties of square roots can be used with a table of square roots to approximate irrational square roots if you don't have a calculator.

Example 2	Approximate each square root to the nearest hundredth.		
	a. $\sqrt{684}$	b. $\sqrt{0.8}$	
Solution	a. $\sqrt{684} = \sqrt{2^2 \cdot 3^2 \cdot 19}$ = $\sqrt{2^2 \cdot 3^2} \cdot \sqrt{19}$	b. $\sqrt{0.8} = \frac{\sqrt{80}}{\sqrt{100}}$	
	$= 6\sqrt{19}$	$\approx \frac{8.944}{10} = 0.8944$	
	From the table: $\sqrt{19} \approx 4.359$ $6\sqrt{19} \approx 6(4.359) = 26.154$	$\therefore \sqrt{0.8} \approx 0.89$ Answer	
	$\therefore \sqrt{684} \approx 26.15$ Answer		

Oral Exercises

State whether each number represents a rational or an irrational number.

1. $\sqrt{17}$ 6. $(\sqrt{2})^4$	2. $\sqrt{49}$ 7. $\sqrt{3} - \sqrt{3}$	 3. √11 8. 7π 	4. $\sqrt{1.21}$ 9. $2.\overline{91}$	5. $5 + \sqrt{2}$ 10. 1.23456789
Simplify.				
11. $\sqrt{50}$	12. $\sqrt{150}$	13. $\sqrt{98}$	14. $\sqrt{128}$	15. $\sqrt{220}$

Approximate each square root to the nearest tenth. Use your calculator or the table at the back of the book.

16. $\sqrt{500}$ 17. $\sqrt{1200}$ 18. $\sqrt{2800}$ 19. $\sqrt{4}$	300 20. $\sqrt{6300}$
---	------------------------------

PVOPCICOC
MAGI GIJGJ

	Simplify.					
Α	1. $\sqrt{63}$	2. $\sqrt{28}$	3. $\sqrt{98}$	4. $\sqrt{50}$	5. $\sqrt{75}$	
	6. $\sqrt{24}$	7. $\sqrt{256}$	8. $\sqrt{120}$	9. $2\sqrt{48}$	10. $6\sqrt{108}$	
	11. $5\sqrt{72}$	12. $9\sqrt{90}$	13. $\sqrt{529}$	14. $\sqrt{324}$	15. $6\sqrt{45}$	

....

16.	$14\sqrt{75}$	17. $\sqrt{361}$	18. $\sqrt{864}$	19. $10\sqrt{125}$	20. $3\sqrt{160}$
21.	$\sqrt{192}$	22. $\sqrt{432}$	23. $5\sqrt{600}$	24. $4\sqrt{363}$	25. $6\sqrt{245}$
26.	$5\sqrt{567}$	27. $\sqrt{5625}$	28. $\sqrt{9200}$	29. $7\sqrt{1200}$	30. $5\sqrt{2050}$

In Exercises 31–50, use your calculator or the table at the back of the book.

Approximate each square root to the nearest tenth.

B 31. $\sqrt{800}$ **32.** $\sqrt{500}$ 33. $-\sqrt{700}$ 34. $-\sqrt{600}$ 35. $-\sqrt{5900}$ 36. $-\sqrt{4800}$ 37. $\pm\sqrt{7800}$ 38. $\pm\sqrt{5600}$ Approximate each square root to the nearest hundredth. 41. $-\sqrt{0.5}$ **39.** $\sqrt{68}$ **40.** $\sqrt{42}$ 42. $-\sqrt{0.3}$ **46.** $-\sqrt{0.08}$ 43. $\pm \sqrt{0.87}$ 44. $\pm \sqrt{0.73}$ 45. $-\sqrt{0.07}$ Approximate each square root to the nearest whole number. **47.** $\sqrt{150,000}$ **48.** $\sqrt{240,000}$ **49.** $\sqrt{420,000}$ **50.** $\sqrt{580,000}$

Mixed Review Exercises

Find the indicated square roots.

1. $\sqrt{400}$	2. $-\sqrt{169}$	3. $\sqrt{\frac{25}{81}}$
4. $-\sqrt{\frac{49}{225}}$	5. $\sqrt{176^2}$	6. $\sqrt{\left(\frac{3}{8}\right)^2}$
Simplify.		
7. $(17x)^2$	8. $(3y^4z^9)^2$	9. $(2x + 3y)^2$
10. $[15(a + 2)]^2$	11. $(11a^4b^{11}c)^2$	12. $(6z^3 + 5y^4)(6z^3 - 5y^4)$

Historical Note / π

The number π occurs naturally as the ratio of the circumference of a circle to its diameter. It is not possible to get an exact value for π since it is an irrational number.

The first known approximation (other than just using 3) was given in the Rhind mathematical papyrus as $(\frac{4}{3})^4$, or 3.1604.... This was used until 240 B.C. when Archimedes calculated π to be between $\frac{223}{71}$ and $\frac{22}{7}$, or 3.14, to two decimal places. Four hundred years later this approximation was improved slightly to $\frac{377}{120}$, or 3.1416. In China, Tsu Ch'ung-chih gave a value for π of $\frac{355}{113}$, or 3.1415929..., which is correct to six decimal places. Indian mathematicians used $\frac{62.832}{20.000}$, although this was later refined to $\frac{754}{240}$.